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Background Mitigation in Xe
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Remaining Backgrounds in The Bulk Xenon
(Luckily these are ER backgrounds...)

e Solar neutrinos
— lrreducible
— ~1 event perdayin LZ

e Radon
— Prevent during construction

— Internal mitigation
— Goal: 0.67 mBq
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* Krypton (this talk)

— Atmospheric gas: present in commercial
Xenon at the ~10,000 ppt level

— Goal: 0.015 ppt (corresponds to 1/10 of solar
neutrino background)

— Removed in advance




Kr-85

Kr-85 is an ER-like background (beta emitter)
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~10,000 ppt = 3 ppt 2 0.015 ppt (0.300 ppt)
Commercial Xe LUX LZ Goal (LZ requirement)

* 0.015 ppt corresponds to only a shotglass of air in LZ’s 10 tons of
Xxenon

* Remove via gas charcoal chromatography



Gas Charcoal Chromatography

 Remove Kr via gas charcoal chromatography

— Helium carrier gas
* Van der Waals bond between between noble gas and activated

charcoal
— Polarized atom attracted to it’s image charge in conductive charcoal surface

— Xenon: larger atom, more electrons, more polarizable

— Faster flow rate of Kr through the charcoal
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Kr Removal R&D System at SLAC

* Upgraded version of LUX Kr removal system (arxiv:1605.03844)
* Run through Chromatography Loop to trap Kr
* Then switch to Recovery Loop to recover purified xenon into condenser
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Chromatography Loop

Charcoal Column
— 60 kg activated charcoal

Circulation Pump
— KNF Diaphragm pump
Kr Trap (in LN)

— U-tube with activated charcoal
— Only Helium can pass
— Filters out Kr and any trace air or oil

Circu
Pump

ation
(KNF)

MFC
-
Kr Trap
in LN
' Charcoal
Xenon
injection Column

Feed (CQC)




Recovery Loop

Condenser
— Freezes Xe on LN-cooled surfaces
— Recover after every ~5 runs.

ACP Pump

— Recovery circulation pump
— “Dry” roots blower

Sniffer bottle (in LN)

— Take small “sniffs” of He/Xe
mixture

— allows us to assay each run
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Residual Gas Analyzer (RGA) & Cocktail
runs

* RGA located after charcoal column,

— Trigger switch to recovery once xenon is detected
— Not sensitive to ppb level Kr

 Add Kr to Xenon to map chromatography
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Distillation Assay System

e Cold-trap assisted RGA (arXiv:1103.2714)
 Developed by collaborators at UMD

e Sensitivity at the 0.005 parts per trillion level

* Will be moved to LZ for online purity monitoring
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Results of Kr R&D

Commercial Xe: 1,000-100,000 ppt

LUX: 3 ppt

LZ Requirement: 0.3 ppt

LZ Goal: 0.015 ppt

R&D result 0.060 ppt => 1/2 solar neutrino background

Main challenges were cross-contamination and trace impurities in UHP He

Developed diagnostic tools such as a clean-xenon-backflow to
systematically check isolated regions and components of the system

Left with one more kr source in system which we could not fix
— ‘Virtual leak’ from the gearbox of our recovery pump into the process space

— Production system will use a different pump design without this failure
mode!



Kr Removal Production System

Process all xenon at SLAC

~1/2 of the LZ Xenon has
already arrived and been
assayed

Scale up batch size by
factor of 8 and overall
processing rate by a factor
of 20

— 2 charcoal columns for
continuous running
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Conclusion

Surpassed our Kr-85 requirement of 0.3 ppt by a factor of 5

Expect to reach our ultimate goal of 0.015 ppt with the
production system!

Developed powerful diagnostic tools for use in production
system

Starting production system procurements, construct next year



Backup



Kr Removal R&D System at SLAC
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Lessons learned/Achievements

Lowest concentration achieved was 0.06 ppt, a factor of 5 lower than our
requirement
— Not quite at 0.015 ppt, but likely to reach this in production system

Discovered and removed sources of cross-contamination from the system

and learned that our UHP helium was not

Developed a method for assaying helium U
sufficient to clean the kr trap C

UHP Helium

Hit limiting factor of R&D system:
Recovery circulation pump had
communication between gearbox space
and process space, Kr outgassing from oil

All of this influences production system design!

16



Diagnostics: Clean Xenon Backflow

Can make small amounts of <5 ppg Xenon with assay system

 Backflow small amount of

xenon into test space 2B
* Can diagnose contamination Kr Trap
sources inLN
— led us to remove certain valves
and filters from the recovery line C0?8d7el?)ser
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Distillation Assay System
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Distillation Assay System Linearity

Create stock calibration
xenon with known Kr
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LZ System: scaling from LUX

Scaling LUX W4

Column / slug 2 kg Xe slug in 16 kg Xe slug in

size 60 kg charcoall 500 kg charcoal Saturation: fix M

Transit time ~ M
flow);
higher pressure
reduces diffusion

120 min: 1000 LPM
500 SLPM @ 0.5 bar up to
2000 SLPM @ 2 bar

Chromatograph 120 min: 100 LPM
y 50 SLPM @ 0.5 bar

Match chromatography time;

180 min: 1500 LPM - conservative scaling since
S A 15 SLPM He @ 10 mbar 252)2&?;\;"&5(5%“\@ 15 faster x 8 M
120 SLPM Xe at peak © MBar-yolume flow, or 18000 LPM

2 kg /5 hours I gy if 2 s Continuous processing
192 kg/day ) :
. 10 kg/day in LZ - no downtime for
Processing rate : :
50 kg/week, incl. 50T / 120 davs storage;
storage y 2 passes of 10 T

(85% uptime)




log, ,(S2) (Charge)

Background and Signal Calibrations

Background Events
e Electron Recoil (ER)
* Higher charge-to-light ratio

Calibrate using high-statistics
tritium dataset (LUX)
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Signal Events (WIMP-like)
Nuclear Recoils (NR)
Lower charge-to-light ratio

Calibrate using D-D neutrons (LUX)

In-situ nuclear recoil (NR) calibration
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LZ Expected Signal from a 40 GeV WIMP

with Expected Backgrounds

log10(52/51)

40 GeV WiMP
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log,,(S2)

3.5

25

Profile Likelihood Ratio (PLR)

Lux data

Compares data to background distribution
and signal distributions for different mass

models
Function of S1, S2, radius, and depth
Fit for systematic parameters
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